Ahumada, J. A., Fegraus, E., Birch, T., Fores, N., Kays, R., O’Brien, T. G., et al. (2020). Wildlife insights: A platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environmental Conservation, 47(1).
Ceccaroni, L., Bibby, J., Roger, E., Flemons, P., Michael, K., Fagan, L., & Oliver, J. L. (2019). Opportunities and risks for citizen science in the age of artificial intelligence. Citizen Science: Theory and Practice, 4(1), 29.
Meurers, D. (2015). Learner corpora and natural language processing. The Cambridge handbook of learner corpus research, 537-566.
Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2019). The future of human-AI collaboration: A taxonomy of design knowledge for hybrid intelligence systems. In T. Bui (Ed.), Proceedings of the Hawaii International Conference on System Sciences (HICSS). (3):15-19
Flage, A. (2024). Taking games: a meta-analysis. Journal of the Economic Science Association, 1-24.
Hamatt, D, Staeheli, C (2011). Respect and responsibility: Teaching citizenship in South African high schools International. Journal of Educational Development, 31 (3). p:14-27
Hand, E. (2010). "Citizen science: People power". Nature. 466 (7307): 685–687.
Kennedy, Graeme (1998). An Introduction to CorPus Linguistics. London: Longman. 13-85.
Lehejcek, J., Adam, M., Tomasek, P., & Trojan, J. (2019). Informacni system pro spravu fotopasti (National database of photo trap records).
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.
Peterson, Andrew & Knowles, Catherine (2009). Active Citizenship: A Preliminary Study into Student Teacher Understandings. Journal of Educational Research, Vol 51 No 1, PP 39-59.
Sandelowski, M., Docherty, S., & Emden, C. (1997). Focus on qualitative methods Qualitative metasynthesis: issues and techniques. Research in nursing and health, 20, 365-372
Swanson, A., Kosmala, M., Lintott, C., & Packer, C. (2016). A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conservation Biology, 30 (3), 520–531.
Purta, J (2018). Civic Education, In: International Encycloped Curriculum. Dergamon press, v (9):117-132
Trojan, J., Schade, S., Lemmens, R., & Frantál, B. (2019). Citizen science as a new approach in geography and beyond: Review and reflections. Moravian Geographical Reports, 27(4), 254–264.
Yick, Alice G. (2013), “A Meta synthesis of Qualitative Findings on the Role of Spirituality and Religiosity Among Culturally Diverse Domestic Violence Survivors”. Health Policy & Services, 37 out of 70.
Zimmer L. (2006), “Qualitative meta-synthesis: a question of dialoguing with texts”, Journal of Advanced Nursing. 53(3): 311-318.
Sadeghi, S. S., Khotanlou, H., & Rasekh Mahand, M. (2021). Automatic Persian text emotion detection using cognitive linguistic and deep learning. Journal of AI and Data Mining, 9(2), 169-179.
Urválková, E. S., & Janoušková, S. (2019). Citizen science–bridging the gap between scientists and amateurs. Chemistry Teacher International, 1(2), 20180032
Yang, D., Wan, H. Y., Huang, T. K., & Liu, J. (2019). The role of citizen science in conservation under the telecoupling framework. Sustainability, 11(4), 1108.